Limits, Continuity, and Derivative Definition

1.

$$\lim_{n \to \infty} \frac{4n^2}{n^2 + 10,000n}$$
 is
(A) 0 (B) $\frac{1}{2,500}$ (C) 1 (D) 4
Answer: D

2. If $f(x) = e^x$, which of the following is equal to f'(e)?

(A)
$$\lim_{h \to 0} \frac{e^{x+h}}{h}$$
(B)
$$\lim_{h \to 0} \frac{e^{x+h} - e^{e}}{h}$$
(C)
$$\lim_{h \to 0} \frac{e^{e+h} - e}{h}$$
(D)
$$\lim_{h \to 0} \frac{e^{x+h} - 1}{h}$$
(E)
$$\lim_{h \to 0} \frac{e^{e+h} - e^{e}}{h}$$
Answer: E
3.
$$\lim_{x \to 0} (x \csc x) \text{ is}$$
(A) $-\infty$
(B) -1
(C) 0
(D) 1
(E) ∞
Answer: D
4.
$$x^{2} + 2x - 3$$

Answer: DNE

5. True or False

If $\lim_{x \to a} f(x) = L$, where *L* is a real number, which of the following must be true?

(A) f'(a) exists.

(B) f(x) is continuous at x = a.

 $\lim_{x \to 3} \frac{1}{x^2 + 6x + 9}$

(C) f(x) is defined at x = a.

(D) f(a) = L

(E) None of the above

Answer: All False

Derivative Rules

(E) nonexistent

1. If $f(x) = (x^2 - 2x - 1)^{\frac{2}{3}}$, then f'(0) is (A) $\frac{4}{3}$ (B) 0 (C) $-\frac{2}{3}$ (D) $-\frac{4}{3}$ (E) -2Answer: 4/3

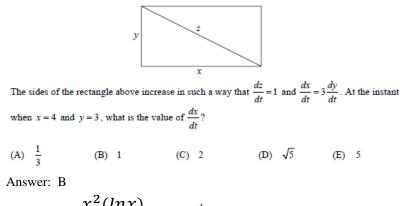
2. $y = \frac{5x+3}{x^2+4x-2}$ Find $\frac{dy}{dx}$ Answer: $\frac{-5x^2-6x-22}{(x^2+4x-2)^2}$

3. Tangent line to $y = x(1 - 2x)^3$ at x = 1Answer: y + 1 = -7(x - 1)

4. $y = 4 \sec(3x) \tan(3x)$ Find $\frac{dy}{dx}$ Answer: $12[\sec^3(3x) + \tan^2(3x)\sec(3x)]$

5. f(2) = -3, f'(2) = 6, $h(x) = [f(x)]^3$

Find h'(2)


Answer: 162

Implicit Differentiation, e, ln, and related topics

1.
$$y = \ln (3x^3 - 2x)$$
 Find $\frac{dy}{dx}$
Answer: $y' = \frac{9x^2 - 2}{3x^3 - 2x}$

2. If $3x^2 + 2xy + y^2 = 2$, then the value of $\frac{dy}{dx}$ at x = 1 is (A) -2 (B) 0 (C) 2 (D) 4 (E) not defined

4.
$$y = e^{x}$$
 (*lnx*) Find $\frac{dy}{dx}$

Answer: $y' = e^{x^2(lnx)}(x + lnx(2x))$

5.

The volume of a cone of radius r and height h is given by $V = \frac{1}{3}\pi r^2 h$. If the radius and the height both increase at a constant rate of $\frac{1}{2}$ centimeter per second, at what rate, in cubic centimeters per second, is the volume increasing when the height is 9 centimeters and the radius is 6 centimeters?

(A)
$$\frac{1}{2}\pi$$
 (B) 10π (C) 24π (D) 54π (E) 108π

Answer: C

Function Analysis

1.

What is the x-coordinate of the point of inflection on the graph of $y = \frac{1}{3}x^3 + 5x^2 + 24$?

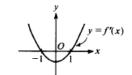
(A) 5 (B) 0 (C) $-\frac{10}{3}$ (D) -5 (E) -10

Answer: D

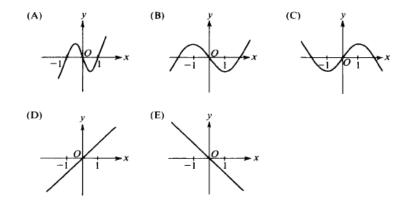
2.

The absolute maximum value of $f(x) = x^3 - 3x^2 + 12$ on the closed interval [-2, 4] occurs at x =

(A) 4 (B) 2 (C) 1 (D) 0 (E) -2


For what value of k will $x + \frac{k}{x}$ have a relative maximum at x = -2? (A) -4 (B) -2 (C) 2 (D) 4 (E) None of these Answer: D 4.

The derivative of
$$f(x) = \frac{x^4}{3} - \frac{x^3}{5}$$
 attains its maximum value at $x =$
(A) -1 (B) 0 (C) 1 (D) $\frac{4}{3}$ (E) $\frac{5}{3}$


Answer: C

5.

3.

The graph of the <u>derivative</u> of f is shown in the figure above. Which of the following could be the graph of f?

Answer: B

6.
$$f(x) = \frac{x^2 + 1}{x^2 - 9}$$

Find all critical points. Which of these points is a relative maximum?

Answer: Critical: x = -3, 3, 0 Relative maximum at x = 0

Answer: A